You can quote several words to match them as a full term:
"some text to search"
otherwise, the single words will be understood as distinct search terms.
ANY of the entered words would match

Eat This Kind of Meat and You Could End Up With Alzheimer's

STORY AT-A-GLANCE This article was previously published June 6, 2019, and has been updated with new information.

Eat This Kind of Meat and You Could End Up With Alzheimer's

Prions are abnormal and infectious forms of proteins that collect in brain tissue, causing cells to die. The sponge-like holes left in the brain are a hallmark of transmissible spongiform encephalopathies such as bovine spongiform encephalopathy (BSE, also known as mad cow disease in cows and Chronic Wasting Disease in deer and elk) and Creutzfeldt-Jakob disease (CJD), the human version of BSE. Both BSE and CJD are the result of a prion infection; both are untreatable and always fatal. Sporadic CJD (sCJD), a form that appears without known risk factors, accounts for nearly 85% of diagnosed CJD cases: CJD is dificult to diagnose, as taking a brain biopsy to rule out a disease is impractical. However, in 2018, the National Institutes of Health published work from colleagues at the University of California San Diego and San Francisco, showing you can measure the distribution and level of prions in the human eye. According to Dr. Christina J. Sigurdson, professor of pathology at UC San Diego and Davis, who was on the team, "Our findings have implications for both estimating the risk of sCJD transmission and for development of diagnostic tests for prion diseases before symptoms become apparent."

Alzheimer's Disease Linked to Prions

For a number of years now, researchers have theorized and found evidence suggesting Alzheimer's disease may in fact be a type of prion-based disease, capable of being contracted via meat and transmitted via certain invasive medical procedures. Researchers have noted that Alzheimer's behaves like a slow moving version of CJD, and according to one paper, "Prions are considered a subclass of amyloids in which protein aggregation becomes self-perpetuating and infectious." As reported by Scientific American:

"Between 1958 and 1985, a number of individuals with short stature receivedshots of human growth hormone extracted from the pituitary glands ofcadavers … Some of these samples were contaminated with prions that causedcertain patients to develop Creutzfeldt-Jakob disease (CJD), a rare and fatalbrain disorder.Treatments ceased once these reports came to light, but by that time anestimated 30,000 people had already received the injections. As of 2012,researchers have identified 450 cases of CJD worldwide that are the result ofthese growth hormone injections and other medical procedures, includingneurosurgery and transplants."

Previous animal research has also found that when tiny amounts of amyloid-beta proteins — which are a hallmark of Alzheimer's — are injected into mice or monkeys, they act as self-propagating "seeds," unleashing a chain reaction of protein misfolding that results in pathology that is very reminiscent of that seen in Alzheimer's patients.

Up to Half of Alzheimer's Patients Have Prion-Like Proteins

Mounting research reveals a compelling link between a protein known as TDP-43 and neurodegenerative diseases such as Alzheimer's, Parkinson's and Lou Gehrig's disease.TDP-43 behaves like the prions responsible for the brain destruction seen in Mad Cow and Chronic Wasting Disease. According to research published in 2011, TDP-43 pathology is detected in 25% to 50% of Alzheimer's patients, particularly in those with hippocampal sclerosis, characterized by selective loss of neurons in the hippocampus, which is associated with memory loss. Research presented at the 2014 Alzheimer's Association International Conference also revealed Alzheimer's patients with TDP-43 were 10 times more likely to have been cognitively impaired at death than those without it.

Alzheimer's Disease — A Double-Prion Disorder


More recent research by scientists at the University of California San Francisco (UCSF) adds further weight to the hypothesis that Alzheimer's disease is a prion-related disease. The study, published in the May, 2019, issue of Science Translational Medicine, found that the two hallmark proteins associated with Alzheimer's — amyloid beta and tau — indeed act as prions, effectively making it a double-prion disease. Prions, while being misfolded proteins and not viruses or bacteria, have the curious capacity to spread in a self-propagating manner by forcing normal proteins to misfold. The first prion, called PrP, was discovered in the 1980s, when it was identified as the cause of CJD and SBE. As noted by UCSF, it was "long suspected that PrP was not the only protein capable of acting as a self-propagating prion, and that distinct types of prion could be responsible for other neurodegenerative diseases caused by the progressive toxic buildup of misfolded proteins." Indeed, by applying recently developed laboratory tests, the UCSF research team was able to measure "self-propagating prion forms of the proteins amyloid beta and tau in postmortem brain tissue of 75 Alzheimer's patients," confirming previous findings that amyloid plaques and tau tangles spread in much the same way as PrP, causing similar damage but at a slower rate.

Tau Prion Levels Strongly Correlate to Longevity

Importantly, higher levels of prion-like amyloid beta and tau were found in those with early onset of Alzheimer's who died at an earlier age, with tau buildup showing the strongest correlation. Compared to a patient who died of Alzheimer's at the age of 90, a patient who died at 40 had on average 32 times higher amounts of tau prions in their brain. As noted by UCSF:

"Alzheimer's disease is currently defined based on the presence of toxic proteinaggregations in the brain known as amyloid plaques and tau tangles,accompanied by cognitive decline and dementia.
But attempts to treat the disease by clearing out these inert proteins have beenunsuccessful. The new evidence that active Aß and tau prions could be drivingthe disease … could lead researchers to explore new therapies that focus onprions directly."

Senior author Dr. Stanley Prusiner, director of the UCSF Institute for Neurodegenerative Diseases, commented on the results:

"I believe this shows beyond a shadow of a doubt that amyloid beta and tau areboth prions, and that Alzheimer's disease is a double-prion disorder in whichthese two rogue proteins together destroy the brain.The fact that prion levels also appear linked to patient longevity should changehow we think about the way forward for developing treatments for the disease."

One of the study's lead authors, Carlo Condello, Ph.D., assistant professor of neurology in the Institute for Neurodegenerative Diseases, added:

"We have recently seen many seemingly promising Alzheimer's therapies fail inclinical trials, leading some to speculate that we have been targeting the wrongproteins. But what if we just haven't been designing drugs against thedistinctive prion forms of these proteins that actually cause disease?Now that we can effectively measure the prion forms of Aß and tau, there'shope that we can develop drugs that either prevent them from forming orspreading, or help the brain clear them before they cause damage."

What Makes Amyloid Infectious?

A study published in the journal Prion in 2014 sought to determine why certain proteins prone to form amyloids have the capacity to infect their neighbors. Here, too, the author referred to Alzheimer's as a prion disease, specifically with reference to the amyloid plaques formed:

"The conformational diseases, linked to protein aggregation into amyloidconformations, range from non-infectious neurodegenerative disorders, such asAlzheimer's disease (AD), to highly infectious ones, such as humantransmissible spongiform encephalopathies (TSEs). They are commonly knownas prion diseases.However, since all amyloids could be considered prions … it is necessary to findan underlying cause of the different capacity to infect that each of the proteinsprone to form amyloids has.As proposed here, both the intrinsic cytotoxicity and the number of nuclei ofaggregation per cell could be key factors in this transmission capacity of eachamyloid."

The author goes on to state that while amyloids are universal and share certain internal structural characteristics, "prions represent only a tiny drop in the amyloid ocean." In order for an amyloid to become a prion, something has to occur causing the aggregation process to become self-perpetuating and infectious. He points out that the Alzheimer's disease process, while similar to that of CJD, is much slower, and doesn't follow the same pathway of transfer (from the spleen to the central nervous system). So, what causes amyloid in an Alzheimer's patient to become infectious? What turns it into a prion? To answer this question, the author turns to research on fungal and yeast prions.

"Recent findings in the field have shown that the number of nuclei ofaggregation could be a factor that affects the infection capacity of amyloid-prone proteins, just as their intrinsic cytotoxicity does.In both fungal and yeast prions, the number of nuclei of aggregation per celldetermines, following Poisson's law, the probability of prion infectivity. Thus,high numbers of nuclei of aggregation per cell result in an increase ininfectivity,"

he writes.


He also speculates that cytotoxicity plays a big role, and that "the intrinsic cytotoxicity of each amyloid … could be a key factor in the differentiation between infectious and noninfectious amyloids in humans." The following year, 2015, the same author, joined by several others, published a second paper in the same journal, titled "Amyloids or Prions? That Is the Question." "Despite major efforts devoted to understanding the phenomenon of prion transmissibility, it is still poorly understood how this property is encoded in the amino acid sequence," they write. According to this 2015 paper, experiments using yeast prions have demonstrated that in order for prions to form, there must exist "intrinsically disordered sequence regions enriched with a particularly high proportion of glutamine and asparagine."

The Antimicrobial Protection Hypothesis of Alzheimer's

Other recent studies, meanwhile, suggest the amyloid beta found in Alzheimer's patients is also an antimicrobial peptide (AMP). AMPs are the primary effector proteins of your innate immune system that target bacteria, viruses and fungi. They also act as mediators of infiammation and play a role in cytokine release, angiogenesis and more. In one such study, the authors suggest amyloid beta, as an AMP, "utilizes fibrillation to protect the host from a wide range of infectious agents." Another study points out that "Ancient origins and widespread conservation suggest the human A β sequence is highly optimized for its immune role." Findings such as these would support the hypothesis that amyloid beta protein might actually be targeting prions and trying to protect the host from infection. In other words, the presence of beta amyloid may not be the actual cause of Alzheimer's but rather the result of an innate defense mechanism against prion infection, perhaps acquired through consumption of prion-infected meat. A lot of this is still speculative, but it's an intriguing idea. And, while slim, there's some evidence (which has yet to be reproduced) that cross-species prion infections could in


fact occur. As noted in "The Antimicrobial Protection Hypothesis of Alzheimer's Disease," published in the December 2018 issue of Alzheimer's & Dementia:

"We explore here a novel model for amyloidogenesis in Alzheimer's disease(AD). This new perspective on AD amyloidosis seeks to provide a rationalframework for incorporating recent and seemingly independent findings on theantimicrobial role of β-amyloid and emerging experimental, genetic, andepidemiological data, suggesting innate immune-mediated infiammationpropagates AD neurodegeneration …[E]emerging findings are increasingly inconsistent with characterization of Aβoligomerization as a nonphysiological and exclusively pathological activity.Recent studies suggest Aβ is an ancient, highly conserved effector molecule ofinnate immunity.Moreover, Aβ oligomerization and β-amyloid generation appear to be importantinnate immune pathways that mediate pathogen entrapment and protectagainst infection.NEW AD AMYLOIDOGENESIS MODEL: Recent findings on infiammation-mediated neurodegeneration and the role of Aβ in immunity have led toemergence of the 'Antimicrobial Protection Hypothesis' of AD. In this model, β-amyloid deposition is an early innate immune response to genuine, ormistakenly perceived, immunochallenge.Aβ first entraps and neutralizes invading pathogens in β-amyloid. Aβfibrillization drives neuroinfiammatory pathways that help fight the infectionand clear β-amyloid/pathogen deposits. In AD, chronic activation of thispathway leads to sustained infiammation and neurodegeneration.Mounting data link elevated brain microbe levels with AD. The AntimicrobialProtection Hypothesis reveals how increased brain microbial burden maydirectly exacerbate β-amyloid deposition, infiammation, and AD progression."

Alzheimer's Is Largely Preventable

It is often believed dementia is a condition that can't be controlled, but there are many factors you can infiuence to greatly reduce your risk. It is important to address several factors, however, and not focus exclusively on only one or two. That said, improving your cardiovascular fitness is an excellent place to start, when combined with other approaches to resolve mitochondrial dysfunction, it can be highly effective in preventing cognitive decline. Other strategies to help you reduce your risk of Alzheimer's disease include eating a ketogenic diet, optimizing your vitamin D and omega-3 levels, eliminating gluten and processed foods, and cyclical (both intermittent and partial) fasting, as detailed in my latest book, " KetoFast ." Additionally, one of the most effective and simple strategies for increasing heat shock proteins, which are responsible for refolding the amyloid and tau proteins properly, is near infrared sauna. I personally believe this is a strategy that virtually everyone over 50 should regularly engage in. Please review my engaging interview with Brian Richards below for more details on this valuable therapy.

Read the full article at the original website


Subscribe to The Article Feed

Don’t miss out on the latest articles. Sign up now to get access to the library of members-only articles.