You can quote several words to match them as a full term:
"some text to search"
otherwise, the single words will be understood as distinct search terms.
ANY of the entered words would match

Synthesis and biological evaluation of the novel chrysin prodrug for non-alcoholic fatty liver disease treatment

Background: Chrysin (5,7-dihydroxyflavone) is a natural flavonoid that has been reported as a potential treatment for non-alcoholic fatty liver disease (NAFLD).

Synthesis and biological evaluation of the novel chrysin prodrug for non-alcoholic fatty liver disease treatment

However, extensive phase II metabolism and poor aqueous solubility led to a decrease in the chrysin concentration in the blood after oral administration, limiting its pharmacological development in vivo. Methods: In the present study, we synthesized a novel chrysin derivative prodrug (C-1) to address this issue. We introduced a hydrophilic prodrug group at the 7-position hydroxyl group, which is prone to phase II metabolism, to improve water solubility and mask the metabolic site. Further, we evaluated the ameliorative effects of C-1 on NAFLD in vitro and in vivo by NAFLD model cells and db/db mice. Results: In vitro studies indicated that C-1 has the ability to ameliorate lipid accumulation, cellular damage, and oxidative stress in NAFLD model cells. In vivo experiments showed that oral administration of C-1 at a high dose (69.3 mg/kg) effectively ameliorated hyperlipidemia and liver injury and reduced body weight and liver weight in db/db mice, in addition to alleviating insulin resistance. Proteomic analysis showed that C-1 altered the protein expression profile in the liver and particularly improved the expression of proteins associated with catabolism and metabolism. Furthermore, in our preliminary pharmacokinetic study, C-1 showed favorable pharmacokinetic properties and significantly improved the oral bioavailability of chrysin. Conclusion: Our data demonstrated that C-1 may be a promising agent for NAFLD therapy..

Read the full article at the original website

References:

Subscribe to The Article Feed

Don’t miss out on the latest articles. Sign up now to get access to the library of members-only articles.
jamie@example.com
Subscribe